Publications

An outlook of 2024

  • Asadollahi, A., Sohrabifar, A., Ghimire, A. B., Poudel, B., & Shin, S. (2024). The Impact of Climate Change and Urbanization on Groundwater Levels: A System Dynamics Model Analysis. Environmental Protection Research, 1-15. DOI:10.37256/epr.4120243531
  • Benz, S.A., Irvine, D.J., Rau, G.C. et al. Global groundwater warming due to climate change. Nat. Geosci. 17, 545–551 (2024). https://doi.org/10.1038/s41561-024-01453-x
  •  Bastiancich L, Lasagna M, Mancini S, Falco M, De Luca DA (2022) Temperature and discharge variations in natural mineral water springs due to climate variability: a case study in the Piedmont Alps (NW Italy) (2022) Environ Geochem Health 44(7), 1971–1994. https://doi.org/10.1007/s10653-021-00864-8
  • Davamani, V., John, J. E., Poornachandhra, C., Gopalakrishnan, B., Arulmani, S., Parameswari, E., … & Naidu, R. (2024). A Critical Review of Climate Change Impacts on Groundwater Resources: A Focus on the Current Status, Future Possibilities, and Role of Simulation Models. Atmosphere15(1), 122. https://doi.org/10.3390/atmos15010122
  • Egidio, E., De Luca, D. A., & Lasagna, M. (2024). How groundwater temperature is affected by climate change: A systematic review. Heliyon. https://doi.org/10.1016/j.heliyon.2024.e27762
  • Egidio E., De Luca DA, Lasagna M (2024) How groundwater temperature is affected by climate change: a systematic review. Heliyon 10 (2024) e27762. DOI: https://doi.org/10.1016/j.heliyon.2024.e27762
  • Jódar, J., Urrutia, J., Herrera, C., Custodio, E., Martos-Rosillo, S., & Lambán, L. J. (2024). The catastrophic effects of groundwater intensive exploitation and Megadrought on aquifers in Central Chile: Global change impact projections in water resources based on groundwater balance modeling. Science of the Total Environment914, 169651. https://doi.org/10.1016/j.scitotenv.2023.169651
  • Kuang, X., Liu, J., Scanlon, B. R., Jiao, J. J., Jasechko, S., Lancia, M., … & Zheng, C. (2024). The changing nature of groundwater in the global water cycle. Science383(6686), eadf0630.
  •  Lasagna M, Egidio E, De Luca DA (2024) Groundwater temperature stripes: a simple method to communicate groundwater temperature variations due to climate change. Water 2024, 16, 717. https://doi.org/10.3390/w16050717
  • Mundetia, N., Sharma, D., & Sharma, A. (2024). Groundwater sustainability assessment under climate change scenarios using integrated modelling approach and multi-criteria decision method. Ecological Modelling487, 110544. DOI: 10.1126/science.adf0630
  • Richard Benyon, Tanya Doody, Jeff Lawson, et al. Effects of Climate Variability and Change on Groundwater Impacts of Forestry Plantations. Authorea. March 31, 2024. DOI: 10.22541/au.171187696.65172426/v1
  • Richardson, C. M., Davis, K. L., Ruiz-González, C., Guimond, J. A., Michael, H. A., Paldor, A., … & Paytan, A. (2024). The impacts of climate change on coastal groundwater. Nature Reviews Earth & Environment5(2), 100-119. DOI: 10.1038/s43017-023-00500-2 
  • Saccò, M., Mammola, S., Altermatt, F., Alther, R., Bolpagni, R., Brancelj, A., … & Reinecke, R. (2024). Groundwater is a hidden global keystone ecosystem. Global Change Biology30(1), e17066. https://doi.org/10.1111/gcb.17066
  • Shafeeque, M., Hafeez, M., Sarwar, A., Arshad, A., Khurshid, T., Asim, M. I., … & Dilawar, A. (2024). Quantifying future water-saving potential under climate change and groundwater recharge scenarios in Lower Chenab Canal, Indus River Basin. Theoretical and Applied Climatology155(1), 187-204. https://doi.org/10.1007/s00704-023-04621-y
  • Schwartz, F. W., & Zhang, H. (2024). Fundamentals of groundwater. John Wiley & Sons.

An outlook of 2023

  • Abd-Elaty, I., Abdoulhalik, A., & Ahmed, A. (2023). The impact of future hydrology stresses and climate change on submarine groundwater discharge in arid regions: A case study of the Nile Delta aquifer, Egypt. Journal of Hydrology: Regional Studies47, 101395. doi:10.1016/j.ejrh.2023.101395
  • Alghamdi, A. G., Aly, A. A., Majrashi, M. A., & Ibrahim, H. M. (2023). Impact of climate change on hydrochemical properties and quality of groundwater for domestic and irrigation purposes in arid environment: a case study of Al-Baha region, Saudi Arabia. Environmental Earth Sciences82(1), 1–17. doi:10.1007/s12665-022-10731-z
  • Aouati, H., Demdoum, A., Kada, H., & Kouadra, R. (2023). The impact of climate change on groundwater quantity and quality in a semi-arid environment: a case study of Ain Azel plain (Northeast Algeria). Acta Geochimica. doi:10.1007/s11631-023-00633-7
  • Asprilla-Echeverría, J. M. (2023). Aquifers and climate: Incentives, information and institutions. Groundwater for Sustainable Development20(September 2022), 100900. doi:10.1016/j.gsd.2022.100900
  • Bresinsky, L., Kordilla, J., Hector, T., Engelhardt, I., Livshitz, Y., & Sauter, M. (2023). Managing climate change impacts on the Western Mountain Aquifer : Implications for Mediterranean karst groundwater resources. Journal of Hydrology X20(July), 100153. doi:10.1016/j.hydroa.2023.100153
  • Costantini, M., Colin, J., & Decharme, B. (2023). Projected Climate-Driven Changes of Water Table Depth in the World’s Major Groundwater Basins. Earth’s Future11(3). doi:10.1029/2022EF003068
  • Diancoumba, O., Toure, A., Keita, S., Konare, S., Mounir, Z. M., & Bokar, H. (2023). Predicting Groundwater Level Using Climate Change Scenarios in the Southern Part of Mali. American Journal of Climate Change12(01), 21–38. doi:10.4236/ajcc.2023.121002
  • Eltarabily, M. G., Abd-Elaty, I., Elbeltagi, A., Zeleňáková, M., & Fathy, I. (2023). Investigating Climate Change Effects on Evapotranspiration and Groundwater Recharge of the Nile Delta Aquifer, Egypt. Water (Switzerland)15(3). doi:10.3390/w15030572
  • Fallahi, M. M., Shabanlou, S., Rajabi, A., Yosefvand, F., & IzadBakhsh, M. A. (2023). Effects of climate change on groundwater level variations affected by uncertainty (case study: Razan aquifer). Applied Water Science13(6), 1–16. doi:10.1007/s13201-023-01949-8
  • Gumuła-Kaw\cecka, A., Jaworska-Szulc, B., Szymkiewicz, A., Gorczewska-Langner, W., Angulo-Jaramillo, R., & Šimůnek, J. (2023). Impact of climate change on groundwater recharge in shallow young glacial aquifers in northern Poland. Science of the Total Environment877(vember 2022). doi:10.1016/j.scitotenv.2023.162904
  • Jannis, E., Vinnå, L. R., Annette, A., Stefan, S., & Schilling, O. S. (2023). Climate change adaptation and mitigation measures for alluvial aquifers – Solution approaches based on the thermal exploitation of managed aquifer (MAR) and surface water recharge (MSWR). Water Research238(vember 2022), 119988. doi:10.1016/j.watres.2023.119988
  • Kamali, S., & Asghari, K. (2023). The Effect of Meteorological and Hydrological Drought on Groundwater Storage Under Climate Change Scenarios. Water Resources Management37(8), 2925–2943. doi:10.1007/s11269-022-03268-0
  • Khadim, F. K., Dokou, Z., Lazin, R., Bagtzoglou, A. C., & Anagnostou, E. (2023). Groundwater Modeling to Assess Climate Change Impacts and Sustainability in the Tana Basin, Upper Blue Nile, Ethiopia. Sustainability (Switzerland)15(7), 1–23. doi:10.3390/su15076284
  • Ndehedehe, C. E., Adeyeri, O. E., Onojeghuo, A. O., Ferreira, G., Kalu, I., & Okwuashi, O. (2023). Science of the Total Environment Understanding global groundwater-climate interactions. Science of the Total Environment904(June), 166571. doi:10.1016/j.scitotenv.2023.166571
  • Nourani, V., Ghareh Tapeh, A. H., Khodkar, K., & Huang, J. J. (2023). Assessing long-term climate change impact on spatiotemporal changes of groundwater level using autoregressive-based and ensemble machine learning models. Journal of Environmental Management336(vember 2022), 117653. doi:10.1016/j.jenvman.2023.117653
  • Rasmussen, P., Kidmose, J., Kallesøe, A. J., Sandersen, P. B. E., Schneider, R., & Sonnenborg, T. O. (2023). Evaluation of adaptation measures to counteract rising groundwater levels in urban areas in response to climate change. Hydrogeology Journal31(1), 35–52. doi:10.1007/s10040-022-02573-7
  • Shaabani, M. K., Abedi-Koupai, J., Eslamian, S. S., & Gohari, A. (2023). Simulation of the effects of climate change and reduce irrigation requirements on groundwater recharge using SWAT and MODFLOW models. Modeling Earth Systems and Environment9(2), 1681–1693. doi:10.1007/s40808-022-01580-7
  • Sharan, A., Lal, A., & Datta, B. (2023). Evaluating the impacts of climate change and water over-abstraction on groundwater resources in Pacific island country of Tonga. Groundwater for Sustainable Development20(April 2022), 100890. doi:10.1016/j.gsd.2022.100890
  • Sheikha-BagemGhaleh, S., Babazadeh, H., Rezaie, H., & Sarai-Tabrizi, M. (2023). The effect of climate change on surface and groundwater resources using WEAP-MODFLOW models. Applied Water Science13(6), 1–15. doi:10.1007/s13201-023-01923-4
  • Stigter, T. Y., Miller, J., Chen, J., & Re, V. (2023). Groundwater and climate change: threats and opportunities. Hydrogeology Journal31(1), 7–10. doi:10.1007/s10040-022-02554-w
  • Van, T. D., Zhou, Y., Stigter, T. Y., Van, T. P., Hong, H. D., Uyen, T. D., & Tran, V. B. (2023). Sustainable groundwater development in the coastal Tra Vinh province in Vietnam under saltwater intrusion and climate change. Hydrogeology Journal31(3), 731–749. doi:10.1007/s10040-023-02607-8
  • Vergnes, J. P., Caballero, Y., & Lanini, S. (2023). Assessing climate change impact on French groundwater resources using a spatially distributed hydrogeological model. Hydrological Sciences Journal68(2), 209–227. doi:10.1080/02626667.2022.2150553
  • Yang, C., & Bertetti, F. P. (2023). Climate elasticity assessment on groundwater recharge to the Edwards Balcones Fault Zone Aquifer, United States. Journal of the American Water Resources Association, (October 2022), 1–14. doi:10.1111/1752-1688.13142
  • Zeydalinejad, N., & Nassery, H. R. (2023). A review on the climate-induced depletion of Iran’s aquifers. Stochastic Environmental Research and Risk Assessment37(2), 467–490. doi:10.1007/s00477-022-02278-z

An outlook of 2021 and 2022

  • Acworth, R. I., Rau, G. C., Cuthbert, M. O., Leggett, K., & Andersen, M. S. (3 2021). Runoff and focused groundwater-recharge response to flooding rains in the arid zone of Australia. Hydrogeology Journal29, 737–764. doi:10.1007/S10040-020-02284-X/TABLES/8
  • Alam, S., Borthakur, A., Ravi, S., Gebremichael, M., & Mohanty, S. K. (5 2021). Managed aquifer recharge implementation criteria to achieve water sustainability. Science of The Total Environment768, 144992. doi:10.1016/J.SCITOTENV.2021.144992
  • Amanambu, A. C., Obarein, O. A., Mossa, J., Li, L., Ayeni, S. S., Balogun, O., … Ochege, F. U. (2020). Groundwater system and climate change: Present status and future considerations. Journal of Hydrology, Vol. 589. doi:10.1016/j.jhydrol.2020.125163
  • Avcı, P., Bayarı, C. S., & Özyurt, N. N. (3 2021). Assessing the effect of climate change on groundwater use in Demre coastal aquifer (Antalya, Turkey), coupled use of climate scenarios and numerical flow modeling. Environmental Earth Sciences, Vol. 80, pp. 1–18. doi:10.1007/S12665-021-09517-6/TABLES/4
  • Barbieri, M., Barberio, M. D., Banzato, F., Billi, A., Boschetti, T., Franchini, S., … Petitta, M. (11 2021). Climate change and its effect on groundwater quality. Environmental Geochemistry and Health, 1–12. doi:10.1007/S10653-021-01140-5/FIGURES/1
  • Barthel, R., Stangefelt, M., Giese, M., Nygren, M., Seftigen, K., & Chen, D. (2021). Current understanding of groundwater recharge and groundwater drought in Sweden compared to countries with similar geology and climate. Https://Doi. Org/10. 1080/04353676. 2021. 1969130103, 323–345. doi:10.1080/04353676.2021.1969130
  • Bhering, A. P., Antunes, I. M. H. R., Marques, E. A. G., & de Paula, R. S. (11 2021). Geological and hydrogeological review of a semi-arid region with conflicts to water availability (southeastern Brazil). Environmental Research202, 111756. doi:10.1016/J.ENVRES.2021.111756
  • Blin, N., Hausner, M., Leray, S., Lowry, C., & Suárez, F. (2022). Potential impacts of climate change on an aquifer in the arid Altiplano, northern Chile: The case of the protected wetlands of the Salar del Huasco basin. Journal of Hydrology: Regional Studies39. doi:10.1016/j.ejrh.2022.100996
  • Boumaiza, L., Walter, J., Chesnaux, R., Lambert, M., Jha, M. K., Wanke, H., … Stumpp, C. (3 2022). Groundwater recharge over the past 100 years: Regional spatiotemporal assessment and climate change impact over the Saguenay-Lac-Saint-Jean region, Canada. Hydrological Processes36, e14526. doi:10.1002/HYP.14526
  • Cao, A., Esteban, M., Valenzuela, V. P. B., Onuki, M., Takagi, H., Thao, N. D., & Tsuchiya, N. (2021). Future of Asian Deltaic Megacities under sea level rise and land subsidence: current adaptation pathways for Tokyo, Jakarta, Manila, and Ho Chi Minh City. Current Opinion in Environmental Sustainability, Vol. 50. doi:10.1016/j.cosust.2021.02.010
  • Cavelan, A., Golfier, F., Colombano, S., Davarzani, H., Deparis, J., & Faure, P. (2022). A critical review of the influence of groundwater level fluctuations and temperature on LNAPL contaminations in the context of climate change. Science of the Total Environment806. doi:10.1016/j.scitotenv.2021.150412
  • Chesnaux, R., Marion, D., Boumaiza, L., Richard, S., & Walter, J. (5 2021). An analytical methodology to estimate the changes in fresh groundwater resources with sea-level rise and coastal erosion in strip-island unconfined aquifers: illustration with Savary Island, Canada. Hydrogeology Journal29, 1355–1364. doi:10.1007/S10040-020-02300-0/FIGURES/6
  • Costa, L. R. D., Hugman, R. T., Stigter, T. Y., & Monteiro, J. P. (11 2021). Predicting the impact of management and climate scenarios on groundwater nitrate concentration trends in southern Portugal. Hydrogeology Journal29, 2501–2516. doi:10.1007/S10040-021-02374-4/FIGURES/13
  • Crosbie, R. S., Davies, P., Harrington, N., & Lamontagne, S. (3 2015). Ground truthing groundwater-recharge estimates derived from remotely sensed evapotranspiration: a case in South Australia. Hydrogeology Journal23, 335–350. doi:10.1007/S10040-014-1200-7/TABLES/1
  • Dillon, P., Stuyfzand, P., Grischek, T., Lluria, M., Pyne, R. D. G., Jain, R. C., … Sapiano, M. (2 2019). Sixty years of global progress in managed aquifer recharge. Hydrogeology Journal27, 1–30. doi:10.1007/S10040-018-1841-Z/FIGURES/5
  • Dubois, E., Larocque, M., Gagné, S., & Braun, M. (2022). Climate Change Impacts on Groundwater Recharge in Cold and Humid Climates: Controlling Processes and Thresholds. Climate10. doi:10.3390/cli10010006
  • Egidio, E., Mancini S., De Luca D.A., Lasagna M. (2022). The Impact of Climate Change on Groundwater Temperature of the Piedmont Po Plain (NW Italy). Water 2022, 14, 2797. https://doi.org/10.3390/w14182797
  •  Egidio E, Lasagna M, De Luca AD (2022) Climate impact assessment to the groundwater levels based on long time-series analysis in a paddy field area (Piedmont region, NW Italy): preliminary results. Acque Sotterranee – Italian Journal of Groundwater, 11(3), 21- 29 https://doi.org/10.7343/as-2022-576
  • Epting, J., Vinnå, L. R., Piccolroaz, S., Affolter, A., & Scheidler, S. (2022). Impacts of climate change on Swiss alluvial aquifers – A quantitative forecast focused on natural and artificial groundwater recharge by surface water infiltration. Journal of Hydrology X17, 100140. doi:10.1016/j.hydroa.2022.100140
  • Fiorillo, F., Leone, G., Pagnozzi, M., & Esposito, L. (2 2021). Long-term trends in karst spring discharge and relation to climate factors and changes. Hydrogeology Journal29, 347–377. doi:10.1007/S10040-020-02265-0/TABLES/7
  • Ghazi, B., Jeihouni, E., & Kalantari, Z. (1 2021). Predicting groundwater level fluctuations under climate change scenarios for Tasuj plain, Iran. Arabian Journal of Geosciences14, 1–12. doi:10.1007/S12517-021-06508-6/FIGURES/10
  • Gleeson, T., Wagener, T., Döll, P., Zipper, S. C., West, C., Wada, Y., … Bierkens, M. F. P. (12 2021). GMD perspective: The quest to improve the evaluation of groundwater representation in continental-to global-scale models. Geoscientific Model Development14, 7545–7571. doi:10.5194/GMD-14-7545-2021
  • Goderniaux, P., Orban, P., Rorive, A., Brouyère, S., & Dassargues, A. (2 2022). Study of historical groundwater level changes in two Belgian chalk aquifers in the context of climate change impacts. Geological Society, London, Special Publications517. doi:10.1144/SP517-2020-212
  • Hassan, W. H., Hussein, H. H., & Nile, B. K. (2022). The effect of climate change on groundwater recharge in unconfined aquifers in the western desert of Iraq. Groundwater for Sustainable Development16, 100700. doi:10.1016/j.gsd.2021.100700
  • Herrera-García, G., Ezquerro, P., Tomas, R., Béjar-Pizarro, M., López-Vinielles, J., Rossi, M., … Ye, S. (1 2021). Mapping the global threat of land subsidence. Science371, 34–36. doi:10.1126/science.abb8549
  • Heyman, J. M., Mayer, A., & Alger, J. (2022). Predictions of household water affordability under conditions of climate change, demographic growth, and fresh groundwater depletion in a southwest US city indicate increasing burdens on the poor. PLoS ONE17, 1–23. doi:10.1371/journal.pone.0277268
  • Hund, S. V., Grossmann, I., Steyn, D. G., Allen, D. M., & Johnson, M. S. (11 2021). Changing Water Resources Under El Niño, Climate Change, and Growing Water Demands in Seasonally Dry Tropical Watersheds. Water Resources Research57, e2020WR028535. doi:10.1029/2020WR028535
  • Jasechko, S., & Perrone, D. (4 2021). Global groundwater wells at risk of running dry. Science372, 418–421. doi:10.1126/SCIENCE.ABC2755/SUPPL_FILE/ABC2755-JASECHKO-SM.PDF
  • MacDonald, A. M., Lark, R. M., Taylor, R. G., Abiye, T., Fallas, H. C., Favreau, G., … West, C. (2 2021). Mapping groundwater recharge in Africa from ground observations and implications for water security. Environmental Research Letters16, 034012. doi:10.1088/1748-9326/ABD661
  • Majola, K., Xu, Y., & Kanyerere, T. (2022). Review: Assessment of climate change impacts on groundwater-dependent ecosystems in transboundary aquifer settings with reference to the Tuli-Karoo transboundary aquifer. Ecohydrology and Hydrobiology22, 126–140. doi:10.1016/j.ecohyd.2021.08.013
  • Mather, B., Müller, R. D., O’Neill, C., Beall, A., Vervoort, R. W., & Moresi, L. (2022). Constraining the response of continental-scale groundwater flow to climate change. Scientific Reports12, 1–16. doi:10.1038/s41598-022-08384-w
  • Menichini, M., Franceschi, L., Raco, B., Masetti, G., Scozzari, A., & Doveri, M. (2022). Groundwater Modeling with Process-Based and Data-Driven Approaches in the Context of Climate Change. Water (Switzerland)14. doi:10.3390/w14233956
  • Minderhoud, P. S. J., Erkens, G., Pham, V. H., Bui, V. T., Erban, L., Kooi, H., & Stouthamer, E. (6 2017). Impacts of 25 years of groundwater extraction on subsidence in the Mekong delta, Vietnam. Environmental Research Letters12, 064006. doi:10.1088/1748-9326/AA7146
  • Negm, A., Abdrakhimova, P., Hayashi, M., & Rasouli, K. (9 2021). Effects of climate change on depression-focused groundwater recharge in the Canadian Prairies. Vadose Zone Journal20, e20153. doi:10.1002/VZJ2.20153
  • Nicholls, R. J., Lincke, D., Hinkel, J., Brown, S., Vafeidis, A. T., Meyssignac, B., … Fang, J. (4 2021). A global analysis of subsidence, relative sea-level change and coastal flood exposure. Nature Climate Change11, 338–342. doi:10.1038/S41558-021-00993-Z
  • Ortmeyer, F., Mas-Pla, J., Wohnlich, S., & Banning, A. (5 2021). Forecasting nitrate evolution in an alluvial aquifer under distinct environmental and climate change scenarios (Lower Rhine Embayment, Germany). Science of The Total Environment768, 144463. doi:10.1016/J.SCITOTENV.2020.144463
  • Ouatiki, H., Boudhar, A., Leblanc, M., Fakir, Y., & Chehbouni, A. (8 2022). When climate variability partly compensates for groundwater depletion: An analysis of the GRACE signal in Morocco. Journal of Hydrology: Regional Studies42, 101177. doi:10.1016/J.EJRH.2022.101177
  • Ouhamdouch, S., Bahir, M., Ouazar, D., & Zouari, K. (2022). Isotopic signature of groundwater and climate change within a semi-arid environment. Groundwater for Sustainable Development17, 100729. doi:10.1016/j.gsd.2022.100729
  • Persaud, E., & Levison, J. (12 2021). Impacts of changing watershed conditions in the assessment of future groundwater contamination risk. Journal of Hydrology603, 127142. doi:10.1016/J.JHYDROL.2021.127142
  • Reinecke, R., Schmied, H. M., Trautmann, T., Andersen, L. S., Burek, P., Flörke, M., … Döll, P. (2021). Uncertainty of simulated groundwater recharge at different global warming levels: A global-scale multi-model ensemble study. Hydrology and Earth System Sciences25. doi:10.5194/hess-25-787-2021
  • Santoni, S., Garel, E., Gillon, M., Marc, V., Miller, J., Babic, M., … Huneau, F. (5 2021). Assessing the hydrogeological resilience of a groundwater-dependent Mediterranean peatland: Impact of global change and role of water management strategies. Science of The Total Environment768, 144721. doi:10.1016/J.SCITOTENV.2020.144721
  • Scanlon, B. R., Rateb, A., Anyamba, A., Kebede, S., Macdonald, A. M., Shamsudduha, M., … Xie, H. (1 2022). Linkages between GRACE water storage, hydrologic extremes, and climate teleconnections in major African aquifers. Environmental Research Letters17, 014046. doi:10.1088/1748-9326/AC3BFC
  • Seddon, D., Kashaigili, J. J., Taylor, R. G., Cuthbert, M. O., Mwihumbo, C., & MacDonald, A. M. (10 2021). Focused groundwater recharge in a tropical dryland: Empirical evidence from central, semi-arid Tanzania. Journal of Hydrology: Regional Studies37, 100919. doi:10.1016/J.EJRH.2021.100919
  • Seidenfaden, I. K., Sonnenborg, T. O., Stisen, S., & Kidmose, J. (2022). Quantification of climate change sensitivity of shallow and deep groundwater in Denmark. Journal of Hydrology: Regional Studies41, 101100. doi:10.1016/j.ejrh.2022.101100
  • Singer, M. B., Asfaw, D. T., Rosolem, R., Cuthbert, M. O., Miralles, D. G., MacLeod, D., … Michaelides, K. (8 2021). Hourly potential evapotranspiration at 0.1° resolution for the global land surface from 1981-present. Scientific Data 2021 8:18, 1–13. doi:10.1038/s41597-021-01003-9
  • Sorensen, J. P. R., Davies, J., Ebrahim, G. Y., Lindle, J., Marchant, B. P., Ascott, M. J., … Taylor, R. G. (12 2021). The influence of groundwater abstraction on interpreting climate controls and extreme recharge events from well hydrographs in semi-arid South Africa. Hydrogeology Journal29, 2773–2787. doi:10.1007/S10040-021-02391-3/FIGURES/9
  • Swain, S., Taloor, A. K., Dhal, L., Sahoo, S., & Al-Ansari, N. (2022). Impact of climate change on groundwater hydrology: a comprehensive review and current status of the Indian hydrogeology. Applied Water Science12. doi:10.1007/s13201-022-01652-0
  • Ulibarri, N., Garcia, N. E., Nelson, R. L., Cravens, A. E., & McCarty, R. J. (3 2021). Assessing the Feasibility of Managed Aquifer Recharge in California. Water Resources Research57, e2020WR029292. doi:10.1029/2020WR029292
  • Warku, F., Korme, T., Wedajo, G. K., & Nedow, D. (2 2022). Impacts of land use/cover change and climate variability on groundwater recharge for upper Gibe watershed, Ethiopia. Sustainable Water Resources Management8, 1–16. doi:10.1007/S40899-021-00588-8/FIGURES/8
  • West, C., Reinecke, R., Rosolem, R., MacDonald, A., Cuthbert, M., & Wagener, T. (8 2022). Ground Truthing Global-Scale Model Estimates of Groundwater Recharge Across Africa. SSRN Electronic Journal. doi:10.2139/SSRN.4184338
  • Wu, W. Y., Lo, M. H., Wada, Y., Famiglietti, J. S., Reager, J. T., Yeh, P. J. F., … Yang, Z. L. (2020). Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers. Nature Communications11. doi:10.1038/s41467-020-17581-y
  • Zhao, J., Lin, J., Wu, J., & Wu, J. (11 2021). Impact of climate change on multi-objective management of seawater intrusion in coastal karst aquifers in Zhoushuizi district of Dalian City, China. Hydrogeology Journal29, 2329–2346. doi:10.1007/S10040-021-02383-3/FIGURES/15
  • Zivar, D., Kumar, S., & Foroozesh, J. (7 2021). Underground hydrogen storage: A comprehensive review. International Journal of Hydrogen Energy46, 23436–23462. doi:10.1016/J.IJHYDENE.2020.08.13

Other publications of impact

 

For more core related scientific publications see here.